Rice University
November 10, 2023
Today
Motivation
Conceptual framework
Case study
Ongoing work
Conclusions
Today
Motivation
Conceptual framework
Case study
Ongoing work
Conclusions
Generic nonstationary model for annual maximum precipitation: \[ y(\vb{s}, t) \sim \text{GEV} (\mu(\vb{s}, t), \sigma(\vb{s}, t), \xi(\vb{s}, t)) \]
Process-informed models condition parameters on climate indices \(\vb{X}(t)\) and spatial feature \(\vb{Z}(\vb{s})\) (Cheng & AghaKouchak, 2014; Salas et al., 2018; Schlef et al., 2023) \[ \theta(\vb{s}, t) = \alpha + \beta(\vb{s}) \times \vb{X}(t) + \phi \times \vb{Z}(\vb{s}) \] where \(\theta \in \{\mu, \sigma, \xi \}\)
Today
Motivation
Conceptual framework
Case study
Ongoing work
Conclusions
Bayesian hierarchical space-time model: \[ \begin{aligned} y(\vb{s}, t) &\sim \text{GEV} (\mu(\vb{s}, t), \sigma(\vb{s}, t), \xi) \\ \mu(\vb{s}, t) &= \alpha^\mu + \beta^\mu_1(\vb{s}) \times \ln \text{CO}_2(t) \\ \log \sigma(\vb{s}, t) &= \alpha^\sigma + \beta^\sigma_1(\vb{s}) \times \ln \text{CO}_2(t) \\ \end{aligned} \]
Assume: latent parameters \(\alpha^\mu, \beta^\mu_1, \alpha^\sigma, \beta^\sigma_1\) are smooth in space. Hierarchical spatial prior: \[ \theta(\vb{s}) \sim \text{GP} \left( m, K(\vb{s}, \vb{s}') \right) \] for \(\theta \in \{\alpha^\mu, \beta^\mu_1, \alpha^\sigma, \beta^\sigma_1 \}\) and \(K = \alpha^2 \exp \left(-\frac{ \| \vb{s} - \vb{s}' \| }{\rho} \right)\)
Today
Motivation
Conceptual framework
Case study
Ongoing work
Conclusions
Adding a few parameters, we explicitly and flexibly model the GEV parameters as a function of duration \(d\) (Fauer et al., 2021; Koutsoyiannis et al., 1998; Ulrich et al., 2020): \[ \begin{aligned} \sigma (d) &= \sigma_0 (d + \theta) ^ {\eta_1 + \eta_2 } + \tau \\ \mu (d) &= \tilde{\mu} (\sigma_0 (d + \theta ) ^ {-\eta_1 } + \tau) \end{aligned} \]
Today
Motivation
Conceptual framework
Case study
Ongoing work
Conclusions
Spatially Varying Covariates Model
@jdossgollin