Fagnant et al. (2020): each line is a gauge from the same \(5^\circ \times 3^\circ\) region
Generic nonstationary model for annual maximum precipitation: \[ y(\vb{s}, t) \sim \text{GEV} \left( \mu(\vb{s}, t), \sigma(\vb{s}, t), \xi(\vb{s}, t) \right) \]
Process-informed models condition parameters on climate indices \(\vb{X}(t)\) (Cheng & AghaKouchak, 2014; Schlef et al., 2023) \[ \theta(\vb{s}, t) = \alpha + \overbrace{\beta(\vb{s})}^\text{more params} \times \overbrace{\vb{X}(t)}^\text{climate} \] for \(\theta \in \{\mu, \sigma, \xi \}\)
Serinaldi & Kilsby (2015): more parameters, same data ā”ļø posterior uncertainty š
We use long-record gauges AND newer mesonets
Show only the increasing trends here:
Bayesian space-time model:
ā Reduce estimation uncertainty
ā Explicitly spatial (free interpolation)
ā Well-calibrated
ā Zap sampling variability